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Complexity measures, simplest 
gene patterns

One may consider a computational type of complexity 
giving an ‘objective’ complexity measure for ciliate genes 
- it shows how much that gene has evolved and how 
involved its assembling is

• In this way, the simplest genes are those than can be 
assembled using ld only, because this is the ‘simplest’ 
operation

• Indeed, this corresponds to the intuition – the genes 
than can be assembled using ld have the MDSs in the 
orthodox order, or circularly shifted
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Complexity of gene assembly

• Gene Assembly - a computational process consisting of 
a sequence of ld, hi, dlad

• The complexity of the process – consider the number of 
the operations and/or the complexity of the 
operations

• The complexity of the gene – the minimal complexity of 
an assembly for that gene

• Similarity measure – assembly processes with similar 
complexity
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Types of complexity measures

• Compare the operations used in the assembly - some of 
them are more complex than the others. This leads to 
considering the genes that can be assembled using a 
given subset of operations.

• Compare the folds involved in the operations applied in 
some assembly - some of them are more complex 
than the others. This leads to considering simple 
operations.

• Consider the operations to be applied in parallel and the 
number of parallel steps in an assembly strategy. This 
leads to the parallel complexity investigation.
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Complexity: types of operations

• Idea 1: Define the complexity as the number of 
operations needed in an assembly 

• The operations are considered here to have the same complexity

• Idea 2: Extend the previous idea by considering 
different complexities for different types of 
operations; consider weights for each operation 

• Clearly, ld is the simplest of the operations, while dlad is the most 
complex one. Thus: ld < hi < dlad
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Complexity measures: Example

Actin I gene in Sterkiella nova:
v = 3 4 4 5 6 7 5 6 7 8 9 -3 -2 2 8 9.

V = 3 4 4 5 6 7 5 6 7 8 9 -3 -2 2 8 9 → (snr
4
)

      3 5 6 7 5 6 7 8 9 -3 -2 2 8 9 → (spr
2
)

   3 5 6 7 5 6 7 8 9 -3 8 9 → (spr
3
)

      -9 -8 -7 -6 -5 -7 -6 -5 8 9 → (spr
9
)

   -8 5 6 7 5 6 7 8 → (spr
8
)

   -7 -6 -5 -7 -6 -5 → (sdr
7,6
)

   -5 -5 → (snr
5
)

   Λ.
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Complexity measures: Example

7

V = 3 4 4 5 6 7 5 6 7 8 9 -3 -2 2 8 9 → (snr
4
)

      3 5 6 7 5 6 7 8 9 -3 -2 2 8 9 → (spr
2
)

   3 5 6 7 5 6 7 8 9 -3 8 9 → (spr
3
)

      -9 -8 -7 -6 -5 -7 -6 -5 8 9 → (spr
9
)

   -8 5 6 7 5 6 7 8 → (spr
8
)

   -7 -6 -5 -7 -6 -5 → (sdr
7,6

)

   -5 -5 → (snr
5
)

   Λ.

• 2 snr, 4 spr, 1 sdr operations. In total: 7 op.
• The complexity of this reduction in the above sense, is 2 · 

csnr + 4 · cspr+1 · csdr, where csnr, cspr, csdr are the 
weights associated to snr, spr, sdr.



Complexity measures: Example
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• Another reduction for v:
V =  3 4 4 5 6 7 5 6 7 8 9 -3 -2 2 8 9 → (snr

4
)

       3 5 6 7 5 6 7 8 9 -3 -2 2 8 9 → (spr
2
)

       3 5 6 7 5 6 7 8 9 -3 8 9 → (sdr
5,6

)

   3 7 7 8 9 -3 8 9 → (sdr
8,9

)

   3 7 7 -3 → (snr
7
)

   3 -3 → (spr
3
)

   Λ.

• 2 snr, 2 spr, 2 sdr operations. In total: 6 op.
• The complexity of this reduction is 2 · csnr +2 · cspr +2 · csdr.
• Recall: the complexity of the former reduction was 2 · csnr + 4 · 

cspr +1 · csdr.



Complexity measures: Example
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V = 3 4 4 5 6 7 5 6 7 8 9 -3 -2 2 8 9 → (snr
4
)

      3 5 6 7 5 6 7 8 9 -3 -2 2 8 9 → (spr
2
)

   3 5 6 7 5 6 7 8 9 -3 8 9 → (spr
3
)

      -9 -8 -7 -6 -5 -7 -6 -5 8 9 → (spr
9
)

   -8 5 6 7 5 6 7 8 → (spr
8
)

   -7 -6 -5 -7 -6 -5 → (sdr
7,6

)

   -5 -5 → (snr
5
)

   Λ.

V =  3 4 4 5 6 7 5 6 7 8 9 -3 -2 2 8 9  (snr→
4
)

       3 5 6 7 5 6 7 8 9 -3 -2 2 8 9 → (spr
2
)

       3 5 6 7 5 6 7 8 9 -3 8 9 → (sdr
5,6

)

   3 7 7 8 9 -3 8 9 → (sdr
8,9

)

   3 7 7 -3 → (snr
7
)

   3 -3 → (spr
3
)

   Λ.

• The latter reduction is easier, if only operations are counted: the former reduction uses 7 and the latter 
uses only 6 operations.

• On the other hand, the latter reduction is harder, if csdr > 2 · cspr.



Complexity: types of patterns

• One can go even deeper and consider that the weight 
depends also on the type of pattern to which is 
applied: e.g., if u = u

1
pu

2
-pu

3
, then cspr

p
 = |u

2
| and if 

u = u
1
pu

2
qu

3
pu

4
qu

5
, then csdr

p,q
 = 2 · (|u

2
| + |u

4
|).

• In this case, the complexity of the first reduction is 22, while that 
of the second is 0!

• The second strategy only uses ‘simple folds’, while the first one 
uses long folds

1
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Complexity classes and similarity 
measure

• The complexity classes give as usual a measure of 
similarity

• Two genes may be considered ‘similar’ from a 
computational point of view if they can be assembled using 
the same subset of operations

• Question: what is the set of micronuclear genes that 
can be assembled using a given subset of 
operations ?

• The answer to this question defines the complexity classes

1
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Complexity defined through 
subsets of operations

• We consider all possible subsets of {ld, hi, dlad} and 
characterize those micronuclear gene patterns that 
can be assembled using only those operations

• Each of the characterizations can be stated in any of the 
three levels of the intramolecular model: MDS 
descriptors, strings, or graphs

• In each case, we choose here the level giving the 
‘simplest’ way of stating the result
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Patterns that can be assembled 
using ld only

• An MDS descriptor can be assembled using ld only if 
and only if it can be obtained from an orthodox 
sequence of MDSs through cyclic shifts

• (i,i+1)(i+1,i+2) . . .(k,e)(b,2) . . .(i-1,i), or
• (i,i-1) ... (2,b)(e,k) ... (i+2,i+1)(i+1,i), 1 ≤ i ≤ k

• A signed overlap graph can be assembled using gnr 
only if and only if it consists of isolated negative 
vertices only (it is a discrete negative graph)

1
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Patterns that can be assembled 
using ld and hi only

• A signed overlap graph can be assembled using gnr and 
gpr only if and only if every non-trivial (more than 
two nodes) connected component contains at least 
one positive vertex

1
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Patterns that can be assembled 
using ld and dlad only

• An MDS-descriptor can be assembled using ld, dlad only 
if and only if either none of its pairs, or all of them 
are signed.

• A signed double occurrence string can be assembled 
using snr and sdr only if and only if all the pointers 
are negative.

• A signed overlap graph can be assembled using gnr and 
gdr only if and only if all the vertices are negative.
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Patterns that can be assembled 
using hi only - example

• Example: M1M4-M2M3, with the legal string u = 2 4 -3 
-2 3 4.

• A successful assembly using spr only:
V = 2 4 -3 -2 3 4 → (spr

2
) 3 -4 3 4 → (spr

4
) -3 3  →

(spr
3
) Λ.

• An unsuccessful one:
V → (spr

3
) 2 4 2 4,

• but the resulting legal string is not successful in Spr.

1
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Patterns that can be assembled 
using hi only - example

1
7

Another example: -M1M2M4M3, with the legal string
v = -2 2 3 4 3 4,

is not successful in Spr, because of the legal substring 
3 4 3 4 with no positive pointers.



Patterns that can be assembled 
using ld, hi and dlad – universality 

result
• Universality result: Any MDS descriptor can be 

assembled using a sequence of ld, hi, dlad.

• Note: Some genes may need all three operations to be 
assembled - see Actin I in O.nova,
(3, 4)(4, 5)(6, 7)(5, 6)(7, 8)(9, e)(-3, -2)(b, 2)(8, 9)

1
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• ld is certainly needed: pointer 4
• so it is hi: pointers 2 and 3
• dlad is also needed since the 

associated graph has one 
non-trivial negative component



Complexity measures: length of 
the interval

• We have concentrated so far on the type of operations 
that are applied in a gene assembly

• However, two applications of the same operations may 
have different complexities, depending on the 
intervals involved in the operation

• The simplest possible intervals involved in the 
operations give rise to the simple applications of our 
operations

1
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Simple ld

• The ld
p
 operation:

ld
p
(δ1(q,p)(p,r)δ2) = δ1(q,r)δ2,

ld
p
((p,m1)(m2, p)) = (m2,m1).

• ld is always simple: there is only one IES between p.
• A boundary application of ld is always the last step in a circular 

assembly

2
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Simple hi

The hi
p
 operation:

hi
p
(δ1(p,q)δ2(-p,-r)δ3) = δ1 -δ2 (-q,-r) δ3,

hi
p
(δ1(q,p)δ2(-r,-p)δ3) = δ1 (q,r) -δ2 δ3,

Simple hi
p
: there is only one IES between p and -p:

2
1



Simple hi

2
2

The hi
p
 operation:

hi
p
(δ1(p,q)δ2(-p,-r)δ3) = δ1 -δ2 (-q,-r) δ3,

hi
p
(δ1(q,p)δ2(-r,-p)δ3) = δ1 (q,r) -δ2 δ3,

Simple hi
p
 operation:

shi
p
(δ1(p,q)(-p,-r)δ3) = δ1 (-q,-r) δ3,

shi
p
(δ1(q,p)(-r,-p)δ3) = δ1 (q,r) δ3,

Effect: p is removed from the pattern and at most 
one pointer is inverted, when ship is applied



Simple dlad

• The dlad
p,q

 operation:

dlad
p,q

(δ1(p,r1)δ2(q,r2)δ3(r3,p)δ4(r4,q)δ5)=δ1δ4(r4,r2)δ3(r3,r1)δ2δ5

dlad
p,q

(δ1(p,r1)δ2(r2,q)δ3(r3,p)δ4(q,r4)δ5)=δ1δ4δ3 (r3,r1)δ2(r2,r4)δ5

dlad
p,q

(δ1(r1,p)δ2(q,r2)δ3(p, r3)δ4(r4,q)δ5)=δ1(r1,r3)δ4(r4,r2)δ3δ2δ5

dlad
p,q

(δ1(r1,p)δ2(r2,q)δ3(p, r3)δ4(q,r4)δ5)=δ1(r1,r3)δ4δ3δ2(r2,r4)δ5

dlad
p,q

(δ1(p,r1)δ2(q, p)δ4(r4,q)δ5)=δ1δ4(r4, r1)δ2δ5

dlad
p,q

(δ1(p,q)δ3(r3,p)δ4(q,r4)δ5)=δ1δ4δ3(r3,r4)δ5

dlad
p,q

(δ1(r1,p)δ2(q,r2)δ3(p, q)δ5)=δ1(r1,r2)δ3δ2δ5

Simple dlad
p,q

: there is exactly one IES in the two sequences between p 

and q:
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Simple dlad

2
4

sdlad
p,q

(δ1(p,q)δ3(r3,p)(q,r4)δ5)=δ1δ3 (r3,r4)δ5

sdlad
p,q

(δ1(r1,p)(q,r2)δ3(p, q)δ5)=δ1(r1,r2)δ3δ5

Effect: p and q are simply removed from the pattern, 
when sdlad

p,q
 is applied



Simple operations: Example

(3, 4) (4, 5) (6, 7) (5, 6) (7, 8) (9, e) (-3, -2) (b, 2) (8, 9) → (ld
4
)

(3, 5) (6, 7) (5, 6) (7, 8) (9, e) (-3, -2) (b, 2) (8, 9) → (dlad
5,6
)

(3, 7) (7, 8) (9, e) (-3, -2) (b, 2) (8, 9) → (ld
7
)

(3, 8) (9, e) (-3, -2) (b, 2) (8, 9) → (dlad
8,9
)

(3, e) (-3, -2) (b, 2) → (hi
2
)

(3, e) (-3, -b) → (hi
3
)

(-e,-b)

2
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Simple operations are not 
universal

• The set of our simple operations is NOT universal - 
there are MDS descriptors / legal strings that cannot 
be assembled using simple operations only

Example: δ = (-2,-b)(4,e)(3,4)(2,3) – no simple operation is 
applicable to δ

• Question: are there any ciliate micronuclear patterns 
that cannot be assembled using simple operations ?

2
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A conjecture on simple operations

• Conjecture: The ciliates only use simple operations in 
the gene assembly process

• The conjecture has been verified for all existing 
experimental data

• It makes sense from a biological point of view

• Justifies the current high interest in the simple 
operations and their patterns

2
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General assembly strategies

• Gene assembly process is non-deterministic:
• General model may assemble the same gene pattern with 

strategies of different lengths and even with different types of 
operations

• Example:

               2 3 4 2 3 -4 2 3 -3 -2

              4 -4 -3 3

               Λ

2
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Simple assembly strategies

• Simple assembly process is also non-deterministic

• However, for a gene pattern numbers of using of each of simple ld, hi 
and dlad operations are preserved from one to another assembly 
strategy

• Formaly: All strategies applicable to the same gene pattern have the 
same complexity (Cld, Chi, Cdlad), where Cld is the number of ld 
operations, Chi is the number of hi operations, Cdlad is the number of 
dlad operations.

• Simple assembly process is confluent

• All strategies applicable to a gene pattern either assemble it to the 
MAC gene, or all of them fail to do that

• Immediate consequence: one can decide in quadratic time whether a 
MIC gene pattern may be assembled to MAC gene – just apply any 
simple strategy

2
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Assembly is nondeterministic

• Assembling MDS descriptors is nondeterministic!

 u=(3,4)(4,5)(6,7)(5,6)(7,8)(9,e)(-3,-2)(b,2)(8,9)

hi3(u)=(3, 5)(6,7)(5,6)(7,8)(9,e)(-3,-2)(b,2)(8,9)

ld-4(hi3(u))=(-e,-9)(-8,-7)(-6,-5)(-7,-6)(-5,-2)(b,2)(8, 9)

hi8(ld-4(hi3(u)))=(-e,-9)(-2,-b)(2,5)(6,7)(5,6)(7,9)

hi-2(hi8(ld-4(hi3(u))))= (-e,-9)(b,5)(6,7)(5,6)(7,9)

dlad5,7(hi-2(hi8(ld-4(hi3(u)))))=(-e,-9)(b, 6)(6,9)

ld6(dlad5,7(hi-2(hi8(ld-4(hi3(u))))))=(-e,-9)(b,9)

hi9(ld6(dlad5,7(hi-2(hi8(ld-4(hi3(u)))))))= (-e,-b)

u=(3,4)(4,5)(6,7)(5,6)(7,8)(9,e)(-3,-2)(b,2)(8,9)

snr4(u)=(3,5)(6,7)(5,6)(7,8)(9,e)(-3,-2)(b,2)(8,9)

sdr5,6(snr4(u))= (3,7)(7,8)(9,e)(-3,-2)(b,2)(8,9)

snr7(sdr5,6(snr4(u)))= (3,8)(9,e)(-3,-2)(b,2)(8,9)

sdr8,9(snr7(sdr5,6(snr4(u))))=(3,e)(-3,-2)(b,2)

spr-2(sdr8,9(snr7(sdr5,6(snr4(u)))))=(3,e)(-3,-b)

spr3(spr-2(sdr8,9(snr7(sdr5,6(snr4(u))))))=(-e,-b)



Reductions can have (in principle) 
different outcomes

• Assembly is nondeterministic! 
• A descriptor can be assembled linearly or circularly

• ldp( δ1 (q,p) (p,r) δ2 ) = δ1 (q,r) δ2 (linear molecule)

• ldp ( (p,r) δ (s,p) ) = (s,r) δ  (circular molecule)



Reductions can have (in principle) 
different outcomes

x=(3,4)(b,2)(-e,-4)(2,3) is assembled on a circular molecule

hi4(x)=(3,e)(-2,-b)(2,3); hi2(hi4(x))=(3,e)(b,3); ld3(hi2(hi4(x)))=[b,e]

y=(3,4)(b,2)(-e,-4)(-3,-2) is assembled on a linear molecule

hi4(y)=(3,e)(-2-b)(-3,-2), hi3(hi4(y))=(b,2)(-e,-2), hi2(hi3(hi4(y)))=(b,e)

hi2(y)=(3,4)(b,3)(4,3), dlad3,4(hi2(y))=(b,e)

• Assembly is nondeterministic! 
• A descriptor can be assembled linearly or circularly

• ldp( δ1 (q,p) (p,r) δ2 ) = δ1 (q,r) δ2 (linear molecule)

• ldp ( (p,r) δ (s,p) ) = (s,r) δ  (circular molecule)



Outcome of the gene assembly process

A gene can have several assembling strategies – 
nondeterministic process

The gene assembly process always produces:
• One linear molecule
• Possibly several circular molecules (due to ld)

The gene is placed on one of these molecules, possibly 
attached to a number of IESs

Questions: 

• Is it possible than one strategy assembles the gene on a circular 
molecule, while another strategy assembles it on a linear one ?

• Is the set of excised molecules dependent on the strategy?



Invariants of the gene assembly process

Results
• If the gene is assembled on a circular (linear, resp.) molecule by one 

particular strategy, then all possible assembly strategies will assemble 
the gene on a circular (linear, resp.) molecule

• The context of the gene (the sequence of IESs attached to the gene): 
always the same, regardless of the reduction strategy

• The set of excised molecules always the same, regardless of the 
reduction strategy

• Note: the ld operations (those that excise molecules) need not be 
applied to the same pointers in every assembling strategy



Example
To show the context of the gene , we keep track of IESs here

δ=(5,6) I1 (2,3) I2 (b,2) I3 (4,5) I4 (7,e) I5 (3,4) I6 (6,7)

• One possible assembly:
– dlad2,3(δ) = (5,6) I1 I3 (4,5) I4 (7,e) I5 I2 (b,4) I6 (6,7)
– dlad5,6(dlad2,3(δ)) = I4 (7,e) I5 I2 (b,4) I6 I1 I3 (4,7)
– ld4(dlad5,6(dlad2,3(δ))) = I4 (7,e) I5 I2 (b,7) + [I6 I1 I3]
– ld7(ld4(dlad5,6(dlad2,3(δ)))) = I4 + [(b,e) I5 I2] + [I6 I1 I3]

• Another one:
– dlad4,7(δ) = (5,6) I1 (2,3) I2 (b,2) I3 I6 (6,e) I5 (3, 5) I4

– dlad2,3(dlad4,7(δ)) = (5,6) I1 I3 I6 (6,e) I5 I2 (b,5) I4

– ld6(dlad2,3(dlad4,7(δ))) = (5, e) I5 I2 (b,5) I4 + [I1 I3 I6 ]

– ld5(ld6(dlad2,3(dlad4,7(δ)))) = I4 + [(b,e) I5 I2] + [I1 I3 I6 ]



Invariants of gene assembly: other results

Results

• A gene is assembled on a linear molecule with no context (no IES 
attached to it) if and only if its micronuclear form contains either 
the substring

(k,e)(b,2) or (-2,-b)(-e,-k)

• A gene is assembled on a circular molecule with no context (no 
IES attached to it) if and only if its micronuclear form starts/ends 
with the MDSs

(b,2)/(k,e) or (-e,-k)/(-2,-b)
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