## Interactions in P systems

#### Artiom Alhazov

Institute of Mathematics and Computer Science Academy of Sciences of Moldova artiom@math.md

October 17, 2006 Computational Biomodelling Laboratory Åbo Academi University, Turku

References:

http://psystems.disco.unimib.it http://www.geocities.com/aartiom/pub\_aa.html

## Outline

- 1 General Definitions
  - Multisets
  - Processing
  - Parallel
  - Distributive

æ

. ⊒ →

(日)

## Outline

- General Definitions
  - Multisets
  - Processing
  - Parallel
  - Distributive
- Object-Object Interaction
  - By rewriting: catalysts
  - Bi-stable
  - By communication: protons
  - Communication only

## Outline

- General Definitions
  - Multisets
  - Processing
  - Parallel
  - Distributive
- Object-Object Interaction
  - By rewriting: catalysts
  - Bi-stable
  - By communication: protons
  - Communication only
- Object-Membrane Interaction
  - Active membranes
  - Properties
  - Polarizations
  - Miscellaneous

Multisets Processing Parallel Distributive

## Multiset

- Let O be a finite alphabet
- A multiset is a set with multiplicities
- Represented by string  $w \in O^*$

## Example $a \quad c \quad a \\ b \quad a \quad b \quad c$ $c \quad a \quad 3 \text{ copies of } a, 2 \text{ copies of } b \text{ and } 2 \text{ copies of } c$

Image: A image: A

Multisets Processing Parallel Distributive

## Reaction rules

- *u* → *v*
- Consume a multiset *u*, and
- Produce a multiset v

#### Example

| а |   | С |   | а | $ba \rightarrow bc$ |
|---|---|---|---|---|---------------------|
|   | b | а | b | С | $ca \rightarrow a$  |

э

(日) (同) (三) (三)

Multisets Processing Parallel Distributive

## Maximal parallelism; non-determinism

#### Parallelism

- The same rule may be applied multiple times
- Different rules may be applied simultaneously

- ● ● ●

Multisets Processing Parallel Distributive

## Maximal parallelism; non-determinism

#### Parallelism

- The same rule may be applied multiple times
- Different rules may be applied simultaneously

#### Maximality

- Objects that are not consumed, remain idle
- No rule should be applicable to the idle objects

Multisets Processing Parallel Distributive

## Maximal parallelism; non-determinism

#### Parallelism

- The same rule may be applied multiple times
- Different rules may be applied simultaneously

#### Maximality

- Objects that are not consumed, remain idle
- No rule should be applicable to the idle objects

| Exa | mp | e |   |   |                                    |
|-----|----|---|---|---|------------------------------------|
| а   |    | с |   | а | $ba \rightarrow bc$ applied once   |
|     | b  | а | Ь | С | $ca \rightarrow a$ applied 2 times |

Multisets Processing Parallel Distributive

## Maximal parallelism; non-determinism

#### Parallelism

- The same rule may be applied multiple times
- Different rules may be applied simultaneously

#### Maximality

- Objects that are not consumed, remain idle
- No rule should be applicable to the idle objects

| Exa | mp | le |   |   |                                     |
|-----|----|----|---|---|-------------------------------------|
| а   |    | с  |   | а | $ba \rightarrow bc$ applied 2 times |
|     | b  | а  | b | С | $ca \rightarrow a$ applied once     |

Multisets Processing Parallel Distributive

## Computation

#### Example

Rules  $ba \rightarrow bc$ ,  $ca \rightarrow a$ , starting multiset  $b^2 a^3 c^2$ .

 $bbaaacc \Rightarrow (bc)^2(a)c:$ 

æ

《口》《聞》《臣》《臣》

Multisets Processing Parallel Distributive

## Computation

#### Example

Rules  $ba \rightarrow bc$ ,  $ca \rightarrow a$ , starting multiset  $b^2 a^3 c^2$ .

 $bbaaacc \Rightarrow (bc)^2(a)c:$ 

 $bbaaacc \Rightarrow b(bc)(a)^2$ :

(日) (同) (日) (日) (日)

3

Multisets Processing **Parallel** Distributive

## Computation

#### Example

Rules  $ba \rightarrow bc$ ,  $ca \rightarrow a$ , starting multiset  $b^2 a^3 c^2$ .

# $bbaaacc \Rightarrow (bc)^{2}(a)c:$ $bbaccc \Rightarrow bbcccc.$ $bbaccc \Rightarrow bbacc \Rightarrow bbccc.$ $bbaccc \Rightarrow bbacc \Rightarrow bbac \Rightarrow bbcc.$ $bbaccc \Rightarrow bbacc \Rightarrow bbac \Rightarrow bbac.$

 $bbaaacc \Rightarrow b(bc)(a)^2$ :

(日)

Multisets Processing **Parallel** Distributive

## Computation

#### Example

Rules  $ba \rightarrow bc$ ,  $ca \rightarrow a$ , starting multiset  $b^2 a^3 c^2$ .

$$bbaaacc \Rightarrow (bc)^{2}(a)c:$$

$$bbaccc \Rightarrow bbcccc.$$

$$bbaccc \Rightarrow bbacc \Rightarrow bbccc.$$

$$bbaccc \Rightarrow bbacc \Rightarrow bbac \Rightarrow bbcc.$$

$$bbaccc \Rightarrow bbacc \Rightarrow bbac \Rightarrow bbac \Rightarrow bbc.$$

$$bbaacc \Rightarrow b(bc)(a)^{2}:$$

$$bbaac \Rightarrow bbacc.$$

イロン イロン イヨン イヨン

æ

Multisets Processing Parallel Distributive

## Structure

- Objects are in regions
- Regions are delimited by membranes
- Associated to the region directly inside
- External region is called the environment

▲ 同 ▶ → ● 三

Multisets Processing Parallel Distributive

## Structure

- Objects are in regions
- Regions are delimited by membranes
- Associated to the region directly inside
- External region is called the environment

#### Cell-like systems

- Membranes are nested
- Serve as channels
- Tree structure

Multisets Processing Parallel Distributive

## Structure

- Objects are in regions
- Regions are delimited by membranes
- Associated to the region directly inside
- External region is called the environment

#### Cell-like systems

- Membranes are nested
- Serve as channels
- Tree structure

- Tissue-like systems
- Cells are in the environment
- Connected by channels

< □ > < 同 > < 回 >

• Graph structure

Multisets Processing Parallel Distributive

## Cell-like VS tissue-like

#### Env



・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

Multisets Processing Parallel Distributive

## Cell-like VS tissue-like



・ロト ・四ト ・ヨト ・ヨト

æ

Multisets Processing Parallel Distributive

## Cell-like VS tissue-like



æ

《口》《聞》《臣》《臣》

Multisets Processing Parallel Distributive

## Result

- Objects can be moved between regions
- Transitional model: target indications
- Destinations are specified in the right side of the rules
- Designated output region (env.=0 or membrane)

Image: A = A

## Result

- Objects can be moved between regions
- Transitional model: target indications
- Destinations are specified in the right side of the rules
- Designated output region (env.=0 or membrane)
- Consider at halting
- total number of objects: a number
- number of objects of each kind: a vector
- order in which objects come: a word

By rewriting: catalysts Bi-stable By communication: protons Communication only

## Two objects by rewriting

- Non-cooperative rules work like a 0L system
- Rules of type  $u \rightarrow v$ ,  $|u| \leq 2$  are already too powerful.

(日) (同) (三) (三)

By rewriting: catalysts Bi-stable By communication: protons Communication only

## Two objects by rewriting

- Non-cooperative rules work like a 0L system
- Rules of type  $u \rightarrow v$ ,  $|u| \leq 2$  are already too powerful.

#### Catalysts $C \subseteq O$

- Catalytic rules are of type ca → cv, c ∈ C, a ∈ O \ C, v ∈ (O \ C)\*
- We may assume the catalysts are distinct
- Essentially, a catalyst ensures that out of associated rules  $a \rightarrow v$  at most one will be applied.

By rewriting: catalysts Bi-stable By communication: protons Communication only

#### Catalysts are universal [Freund et al.]

#### Theorem

Purely catalytic P systems with 3 catalysts generate RE.

- Like 3 CF grammars
- working on the same sentential form
- only interacting by competing for resources
- With non-cooperative rules this can be improved

Image: A image: A

By rewriting: catalysts Bi-stable By communication: protons Communication only

#### Catalysts are universal [Freund et al.]

#### Theorem

Purely catalytic P systems with 3 catalysts generate RE.

- Like 3 CF grammars
- working on the same sentential form
- only interacting by competing for resources
- With non-cooperative rules this can be improved

#### Theorem

P systems with 2 catalysts generate RE.

By rewriting: catalysts Bi-stable By communication: protons Communication only

## **Bi-stable catalysts**

• 
$$a \rightarrow u$$
,

•  $ca \rightarrow c'u$ 

#### Theorem

P systems with 1 bi-stable catalyst generate RE.

- Like a 0L system and a CF grammar
- the latter has 1-bit memory

Image: A image: A

By rewriting: catalysts Bi-stable By communication: protons Communication only

## Interaction by moving objects

- Symport rules: (v, out) or (u, in)
- Antiport rule: (v, out; u, in)
- weight: max(|u|, |v|)

(日) (同) (三) (三)

By rewriting: catalysts Bi-stable By communication: protons Communication only

## Interaction by moving objects

- Symport rules: (v, out) or (u, in)
- Antiport rule: (v, out; u, in)
- weight: max(|u|, |v|)
- Minimal cooperation: rules envolve at most 2 objects
- in one way: (*sym*<sub>1</sub>, *anti*<sub>1</sub>) or (*sym*<sub>2</sub>)





< 🗇 🕨 < 🖻 🕨

By rewriting: catalysts Bi-stable By communication: protons Communication only

## Interaction by moving objects

- Symport rules: (v, out) or (u, in)
- Antiport rule: (v, out; u, in)
- weight: max(|u|, |v|)
- Minimal cooperation: rules envolve at most 2 objects
- in one way: (*sym*<sub>1</sub>, *anti*<sub>1</sub>) or (*sym*<sub>2</sub>)





• Evolution-communication: non-cooperative evolution plus communication with minimal cooperation

By rewriting: catalysts Bi-stable **By communication: protons** Communication only

## Protons $P \subseteq O$

#### A proton

- is one of the interacting objects
- is never mentioned in evolution rules
- is essentially an *m*-stable catalyst of communication

The previous Theorem was proved as a corollary of

#### Theorem

P systems with 1 proton and 2 membranes generate RE

A > 4 3

By rewriting: catalysts Bi-stable **By communication: protons** Communication only

### More results

Time-freeness: rules are not necessarily executed in 1 step; the result should be independent.

#### Theorem

4 protons and 2 membranes suffice for generating RE

A 1

By rewriting: catalysts Bi-stable **By communication: protons** Communication only

## More results

Time-freeness: rules are not necessarily executed in 1 step; the result should be independent.

#### Theorem

4 protons and 2 membranes suffice for generating RE

- Accepting: the input multiset is placed in a designated region; it is accepted iff the system halts
- Determinism: the maximal multiset of applicable rules is always unique

#### Theorem

3 membranes suffice for accepting PsRE

< A >

By rewriting: catalysts Bi-stable By communication: protons Communication only

#### Symport/antiport only Rules envolving at most 3 objects

• There are infinitely many objects from *E* ⊆ *O* in the environment

Known results

#### Theorem

*P* systems with  $(sym_1, anti_{2/1})$  generate NRE and deterministically accept PsRE, already with 1 membrane. The accepting case also holds for  $(sym_3)$ 

By rewriting: catalysts Bi-stable By communication: protons Communication only

#### Symport/antiport only Rules envolving at most 3 objects

• There are infinitely many objects from *E* ⊆ *O* in the environment

Known results

#### Theorem

*P* systems with  $(sym_1, anti_{2/1})$  generate NRE and deterministically accept PsRE, already with 1 membrane. The accepting case also holds for  $(sym_3)$ 

#### Improved result:

#### Theorem

P systems with  $(sym_3)$  and 1 membrane generate at least  $N_7RE$ 

By rewriting: catalysts Bi-stable By communication: protons Communication only

#### Minimal cooperation Rules envolving at most 2 objects: (*sym*<sub>1</sub>, *anti*<sub>1</sub>) or (*sym*<sub>2</sub>)

"Clean" result:

Theorem

#### Such P systems with 3 membranes generate NRE

<ロト < 同ト < 三ト

By rewriting: catalysts Bi-stable By communication: protons Communication only

#### Minimal cooperation Rules envolving at most 2 objects: (*sym*<sub>1</sub>, *anti*<sub>1</sub>) or (*sym*<sub>2</sub>)

"Clean" result:

Theorem

Such P systems with 3 membranes generate NRE

Latest and optimal: 1 "garbage" object

#### Theorem

Such P systems with 2 membranes generate at least  $N_1RE$ ; if a set containing 0 is generated, that set is finite.

#### Theorem

Such P systems with 1 membrane only generate finite sets.

< D > < A > < B >

By rewriting: catalysts Bi-stable By communication: protons Communication only

#### Massive cooperation Limiting membranes and |O|

"Heavy" symport/antiport rules are considered; information is stored in big multisets over a small alphabet.

#### Theorem

P systems with  $m \ge 2$  membranes and  $n \ge 1$  symbols,  $m + n \ge 6$  generate NRE

(日)

By rewriting: catalysts Bi-stable By communication: protons Communication only

# Massive cooperation Limiting membranes and |O|

"Heavy" symport/antiport rules are considered; information is stored in big multisets over a small alphabet.

#### Theorem

P systems with  $m \ge 2$  membranes and  $n \ge 1$  symbols,  $m + n \ge 6$  generate NRE

- Generating vectors
- Tissue P systems
- smaller (m, n)

are also studied.

Image: A image: A

Active membranes Properties Polarizations Miscellaneous

## Active membranes

 $h \in H \text{ is a membrane label, } e, e', e'' \in E \text{ are polarizations}$ (a)  $[a \rightarrow v]_{h}^{e}$  evolution
(b)  $a[]_{h}^{e} \rightarrow [b]_{h}^{e'}$  send in
(c)  $[a]_{h}^{e} \rightarrow [b]_{h}^{e'} b$  send out
(d)  $[a]_{h}^{e} \rightarrow b$  dissolution
(e)  $[a]_{h}^{e} \rightarrow [b]_{h}^{e'} [c]_{h}^{e''}$  division of elementary membrane
• etc.

Question: how much information does a membrane need to carry for the systems to be complete or efficient

(日)

Active membranes Properties Polarizations Miscellaneous

## Properties

- Determinism
- Confluence

æ

Active membranes Properties Polarizations Miscellaneous

## Properties

- Determinism
- Confluence
- Uniform solution
- Semi-uniform solution

э

(日) (同) (三) (三)

Active membranes Properties Polarizations Miscellaneous

## Properties

- Determinism
- Confluence
- Uniform solution
- Semi-uniform solution
- etc.

æ

(日) (同) (三) (三)

Active membranes Properties Polarizations Miscellaneous

## Polarizations

#### Theorem

*Systems with 2 polarizations are complete (in 1 membrane) and efficient.* 

#### Theorem

Systems with 1 polarization are complete (unbounded membrane division) and efficient (with non-elementary membrane division).

< 4 → < 三

Active membranes Properties Polarizations Miscellaneous

## Polarizations

#### Theorem

*Systems with 2 polarizations are complete (in 1 membrane) and efficient.* 

#### Theorem

*Systems with 1 polarization are complete (unbounded membrane division) and efficient (with non-elementary membrane division).* 

Minimal parallelism: at least one rule associated to every membrane is applied, if possible.

#### Theorem

Minimally parallel systems are efficient with 6 or 4 polarizations, depending on the rules used.

- Using separation instead of division
- Changing membrane labels instead of polarizations
- Descriptional complexity parameters
- o . . .

э

- Using separation instead of division
- Changing membrane labels instead of polarizations
- Descriptional complexity parameters

• • • •

- Cooperation by promoters or inhibitors
- Sorting P systems
- Solving graph problems

• • • •

(日) (同) (三) (三)

- Using separation instead of division
- Changing membrane labels instead of polarizations
- Descriptional complexity parameters

• • • •

- Cooperation by promoters or inhibitors
- Sorting P systems
- Solving graph problems
- • •
- Topics outside the scope of this presentation

<ロト < 同ト < 三ト