
Special course in Computer Science:
Advanced Text Algorithms

Lecture 7: Approximate pattern matching,
local alignments and alignments with gaps

Eugen Czeizler
Department of IT, Abo Akademi
http://combio.abo.fi/teaching/textalg/

(slides originally by I. Petre, E. Czeizler, V. Rogojin)

Approximate Pattern Matching

• Important generalization of exact matching: locate
similar occurrences of a pattern instead of exact copies.

• Given a parameter k, a substring T’ of T is an
approximate occurrence of P iff the optimal alignment
between P and T’ is at least k

• Approximate occurrences of a pattern P within a text T
can be computed as a slight variation of (global)
alignment.

• we will use a recurrence formula very similar with the one for
computing a global alignment between two strings

• dynamic programming approach.

2

Alignments

• A (global) alignment of S1 and S2 is obtained by
inserting spaces in the strings, and then placing them
one above the other s.t. each char or space is opposite a
unique char or space from the other string. Moreover, a
space in one string cannot be aligned with a space in the
other string.

• “global” ~ the entire strings participate in the alignment

• local alignments ~ regions of high similarity

• Example: A global alignment of “vintner” and “writers”:

V_INTNER_

WRI_T_ERS

3

Recurrence relation

• Let Σ’ be the alphabet Σ extended with the space ‘_’

• Denote by s(x,y) the score of aligning chars x and y of Σ’

• Base conditions give the total score of aligning chars with
spaces:

• The base condition for row 0 implies that T[1]; T[2];...;
T[j] are aligned with spaces “for free”, i.e., “it doesn’t cost
(or pay) to slide P along T”

4

1

(0,) 0

(,0) ((), _)
i

k

V j

V i s P k






Recurrence relation

• The general recurrence for i,j > 0 similarly takes the
character-specific scores into account:

5

(1,) ([i],_)

(,) max (, 1) (_, [j])

(1, 1) ([i], [j])

V i j s P

V i j V i j s T

V i j s P T

 


  
   

Recurrence relation

2.Align P[i] and T[j]

• Find the best alignment of P[1…i-1] and T[1…j-1]

• The score of aligning P[1…i] and T[1…j] would then be
V(i-1,j-1) + s(P[i],T[j])

3.Align P[i] with a gap

• Find the best alignment of P[1…i-1] and T[1…j]

• The score would then be V(i-1,j)+s(P[i],_)

4.Align T[j] with a gap

• Find the best alignment of P[1…i] and T[1…j-1]

• The score would then be V(i,j-1)+s(_,T[j])

• Table V (i,j) can be filled, as before, in time (nm)

6

Example
•Take the following score scheme:

• any match: score 1

• any mismatch: score -1

• any gap: score -1

And the two strings: P=rie and T=writer

7

Finding Approximate
Occurrences

• An approximate occurrence of P[1..n] ends at position
j within T if and only if V(n,j)≥k

• T[l..j] is an approximate occurrence of P in T if and
only if V(n,j)≥k and there is a path of backpointers from
cell (n,j) to cell (0,l)

8

Finding Approximate
Occurrences

• There can be multiple approximate occurrences of P (of
different length) ending at the same position j of T.

• The shortest approximate occurrences of a pattern P in
the text T can be located as follows:

1. Find each column j on row n with V(n,j)≥k

2. For each such j, trace pointers from the cell (n,j) to
row 0, preferring pointers ‘’ over ‘↖’, and ‘↖’ over ’’

• This way we explicitly output only the shortest approximate
occurrences of P within the text T.

9

Significance of backpointers

1. pointer ‘’ from (i,j) to (i-1,j): space in T opposite to
P[i]

2. pointer ‘↖’ from (i,j) to (i-1, j-1): P[i] and T[j] are
aligned

3. pointer ‘’ from (i,j) to (i,j-1): space in P opposite to
T[j], and

10

Local alignments
• Sometimes although 2 strings are not highly similar, they
may contain regions that are highly similar.

• Thus, we are interested in finding a pair of substrings, one from
each of the 2 strings that exhibit high similarity.

• Local alignment (or local similarity) problem: Given
strings S1 and S2, find substrings  and  of S1 and S2 of
maximal similarity among all pairs of substrings from S1

and S2. Let v* denote the value of the optimal solution.

• In Lecture 6 we discussed two measures for the
relatedness of two strings:

• the edit distance

• the similarity

11

Local alignments

• Question: Why is the local alignment defined in terms
of similarity instead of edit distance?

• If we would search for 2 substrings minimizing the edit
distance, then, under most natural scoring schemes, the
optimal pair would be exactly matching substrings.

• The matching substrings could be 1 character long

• They would not identify a region of high similarity.

• Maximizing similarity is thus more useful for finding
longer areas of high similarity.

• Matches contribute positively

• Mismatches contribute negatively

12

Local alignments
• Example: Let S1=pqraxabcstvq and S2=xyaxbacsll and we
take the following scoring scheme:

• each match: score +2

• each mismatch: score -2

• each gap, i.e. aligning a space with a character: score -1.

Then, the substrings =axabcs of S1 and =axbacs of S2

have the following optimal alignment of value 8.

a x a b _ c s

a x _ b a c s

Over all choices of pairs of substrings, one from S1 and one
from S2, the 2 substrings  and  have maximum similarity.

Hence, for this example v*=8 and is defined by =axabcs
and =axbacs

13

Local vs. Global Alignment?

• Global alignment is often meaningful when comparing
members of the same protein family

• Protein cytochrome c has almost the same length in most
organisms that produce it, so one expects to see a relationship
between their sequences in different organisms.

• Same is true for proteins in the globulin family

• When trying to infer evolutionary history by examining
protein sequence similarities and differences, one
usually compares proteins in the same familly.

14

Local vs. Global Alignment?

• Local alignment considered more useful for comparing
anonymous DNA sequences (where only some internal
sections may be related)

• When comparing two protein sequences, local
alignment is useful in detecting structural or functional
subunits such as motifs or domains

• the homeobox genes regulate high-level embryonic
development in many organisms from fruit-flies to pigs to
humans

• The protein sequences are of course very different with one
exception: the homeodomain (about 60 aminoacids) is
extremely similar in insects and mammalians –this is very odd
because this is part of a crucial regulatory protein that binds
to DNA

15

Computing Local Alignment

• The local alignment problem btw strings S1[1..n] and
S2[1..m] can be solved in O(nm) time

• even though there are (n2m2) possible pairs of substrings!

• In the definition of local alignments (given earlier) any
scoring scheme was allowed for the global alignment of the
two chosen substrings.

• The following restriction will be useful for computing the local
alignment.

• Assume first that the similarity of two empty strings is 0
• This allows the local alignment algorithm to chose the substrings 

and  to be empty.

16

Computing Local Alignment

• Consider the following restricted version of the problem:

Given indices i≤n and j≤m, the local suffix alignment
problem consists of finding a (possibly empty) suffix  of
S1[1..i] and a (possibly empty) suffix  of S2[1..j] of
maximal similarity.

We denote by v(i,j) the value of the optimal local suffix
alignment for the index pair (i,j)

17

Example of Local Suffix
Alignments

• Example: Take the following score scheme:

• s(x,y) = 2 when x=y≠_,

• s(x,y) = -1 when x≠y, for any x,yΣ{_}

Consider strings S1=abcfdef and S2=fffcde.

Then:
• v(3,4)=2, since ==c

• v(4,5)=1, since =cf and =cd

• v(5,5)=3, since =f_d and =fcd

• Since the definition allows either or both suffixes to be
empty, v(i,j)≥0

18

Computing Local Alignment

• For each common substring u of sequences S1 and S2,
there are i and j such that u is at the same time a suffix
of S1[1…i] and of S2[1…j]

• For each i=0,1,…,n and j=0,1,…,m, v(i,j) is the best
score between a suffix of S1[1…i] and a suffix of
S2[1…j].

• Then the highest value in matrix v will give the most
similar substrings of sequences S1 and S2

• That is v*=max{v(i,j) | i≤n, j≤m}

19

Local suffix alignment problem

• How does one align a suffix S1[1…i] with a suffix
S2[1…j] in the best way?

• If i=0 or j=0 then the best is to align two empty
strings with score 0.

• The base conditions: v(i,0)=0

v(0,j)=0

• Otherwise, there are four options when computing the
best alignment for a suffix of S1[1…i] and a suffix of
S2[1…j], depending on how the endings are aligned

20

Local suffix alignment problem
1.Take the two suffixes to be the empty strings

• this gives score 0

2.Align S1[i] and S2[j]

• Find the best alignment of S1[1…i-1] and S2[1…j-1]

• The score of aligning S1[1…i] and S2[1…j] would then be
v(i-1,j-1) + s(S1[i], S2[j])

3.Align S1[i] with a gap

• Find the best alignment of S1[1…i-1] and S2[1…j]

• The score would then be v(i-1,j)+s(S1[i],_)

4.Align S2[j] with a gap

• Find the best alignment of S1[1…i] and S2[1…j-1]

• The score would then be v(i,j-1)+s(_,S2[j])

21

Local suffix alignment problem

• Choose that option which maximizes the alignment
score:

• A table storing the v(i,j) values, including the
backpointers, can be computed applying the
recurrences, in a similar way as before

22

      

    

    

1 2

1

2

0

i 1, j 1 i , j
(i, j) max

i 1, j i , _

i, j 1 _, j

v s S S
v

v s S

v s S




  
 

 


 

Local suffix alignment problem

• The value v(i,j) stores the highest score between a suffix
of S1[1…i] and a suffix of S2[1…j]

• There is always the alignment between the empty suffixes of
S1[1…i] and S2[1…j] with cost 0

• We introduce 0 in the maximum formula in the previous slide:
alignment of score 0 is always guaranteed (align empty suffixes)
–we look for anything better

• The matrix will only have nonnegative values

23

Local alignment

• Solving the local suffix alignment gives also the score
of the best local alignment: the largest value in the
matrix v.

• Question: How does one find that best local alignment?

• Answer: “walk” from the highest value in the matrix
following the arrows until the first zero is reached

24

Local alignment –example

• Locally compare sequences ACTACTG and GCTGCTA

• Scoring scheme:

• Match: score +1

• Mismatch: score -1

• Gap: score -1

ACTACTG ACTACTG ACTACTG

GCTGCTA GCTGCTA GCTGCTA

25

Complexity of Local Alignment

• Maximum value v* is found say, in cell v(i*,j*), by going
through all cells of the table. Substrings  and  with
similarity v* are then found by tracing backpointers from
cell (i*,j*) along a path (i*,j*);... ;(i’,j’); (i0,j0), where
v(i0,j0)=0

• Then =S1[i’.. i*] and =S2[j’..j*]

• Theorem: Local alignment between strings S1[1..n] and
S2[1..m] can be computed in time O(nm)

Proof.

• Table v(i,j) is filled in constant time per cell

• The cell (i*,j*) with an optimal score is found in time O(nm), and
the traceback for (i’,j’) requires at most n + m steps

26

Remarks

• Instead of a single highest-scoring pair (,) of
substrings, a number of similar substrings, say with
similarity above a given threshold, can be found in a
similar manner.

• Suitable scoring schemes are needed for meaningful
local alignments:

• scoring matches with 1 and mismatches/spaces with 0 locates
longest common subsequences

• penalizing mismatches/spaces with large negative values
yields longest common substrings

• scoring matrices with a positive average score tend to prefer
long alignments, which approach global alignments

27

Alignments with Gaps

• A gap is a maximal consecutive run of spaces in a
single string participating in an alignment

• In some cases alignments with gaps correspond better
to the biological phenomena that we try to model, e.g.,
the likelihood of mutational events needed to transform
one sequence into the other

• a deletion or an insertion of an entire (DNA) substring (i.e., a
gap) often occurs as a single mutational event

• gaps are sometimes key features for inferring evolutionary
history of a set of strings

28

Alignments with Gaps

• Example of an alignment with gaps:

c t t t a a c _ _ a _ a c

c _ _ _ c a c c c a t _ c

This alignment includes 5 matches, 1 mismatch, 4 gaps,
and 7 spaces.

• By including a term in the objective function to reflect
the gaps in the alignment, we can influence the
distribution of spaces in the alignment.

29

How to Score the Gaps?

• Different possibilities to score the gaps of an alignment:

• constant, affine, convex, and arbitrary

• A constant gap weight is the simplest:

• Set s(_,x) = s(x,_) = 0 for every char x, and score each
gap by constant Wg (independent of gap length)

• Then the score of an alignment is:

where S’1 and S’2 are the strings padded with spaces for
the alignment, and k is the total number of gaps

30

1 21
(' [], ' [])

l

gi
s S i S i kW




How to Score the Gaps?

• Changing the value Wg relative to the other weights
can change how spaces are distributed in the optimal
alignment.

• For instance, large Wg encourages the alignment to
have just a few gaps, and the aligned portions of the 2
strings will fall into a few substrings.

31

Affine Gap Weights

• Generalization of constant gap weight: Treat Wg as a gap
initiation weight, and add a gap extension weight Ws for
each space

• a gap of length k adds cost Wg+k Ws to the score (which is an
“affine” function)

• Affine gap weights are probably the most commonly used
ones in molecular biology

• Default weights of FASTA are Wg= 10 and Ws= 2

• Optimal alignments under this model maximize

with scores s(_,x) = s(x,_) =-Ws for each x, and k is the
number of gaps in the alignment

32

1 21
('[], '[])

l

gi
s S i S i kW




Convex Gap Weights

• It seems that some biological phenomena are better
modeled by a gap weight function where each additional
space in a gap contributes less to the gap weight than
the preceding space.

• An example of such a convex gap weight where
additional spaces cost less than earlier ones is Wg+log l
for gaps of length l

• Finally, we may have also arbitrary gap weights, where
the weight of a gap is an arbitrary function w(l) of its
length.

33

Time Bounds for Different Gap
Weights

• Optimal alignments can be found in the following
times:

1. O(nm2+n2m) for arbitrary gap weights

2. O(nmlogm) for convex gap weights

3. O(nm) for affine and constant gap weights

• We will discuss the first and the third case in details
(The algorithm for convex gap weights is more
complicated)

34

Computing Arbitrary Gap-
Weight Alignments

• Consider an optimal alignment between the prefixes
S1[1..i] of S1 and S2[1..j] of S2;

• It can either

• align S1[i] to the left of S2[j] (case E)

• align S2[j] to the left of S1[i], or (case F)

• align S1[i] against S2[j] (case G)

• Let E(i,j) be the maximum value of alignments of type
E, and respectively F(i,j) and G(i,j) the maximum values
of alignments of type F and G.

• The maximum value V(i,j) of any alignment between
S1[1..i] and S2[1..j] is then max{E(i,j),F(i,j),G(i,j)}

35

Recurrences for Arbitrary Gap
Weights

• Let w(l) be the weight of a gap of length l

• Base cases:

(as the cost of aligning a non-empty string with a gap)

• Recurrence formulas for the different cases for i; j > 0
are as follows:

36

(,0) (), (0,) ()

(,0) (), (0,) ()

(0,0) 0, and G is undefined if only one of i or j is 0

V i w i V j w j

E i w i F j w j

G

   

   



1 2

(,) max{ (,) () | 0 1}

(,) max{ (,) () | 0 1}

(,) (1, 1) ([], [])

E i j V i k w j k k j

F i j V l j w i l l i

G i j V i j s S i S j

     

     

   

Complexity
• The optimal alignment value V(n,m) can be computed by
filling an (n + 1)(m + 1) table V(i,j) according to the
recurrences

• Theorem: The similarity of S1[1..n] and S2[1..m] under
arbitrary gap weights can be computed in time
O(nm2+n2m)

Proof.

• Each E(i,j) is computed by examining j cells of table V, leading to
Σ1≤j≤mj = O(m2) for computing a single row and O(nm2) for all
E(i,j)

• Similarly, each F(i,j) is computed from i cells of table V, leading to
O(mn2) time to compute all values F(i,j)

• In addition to that, each of V(i,j) and G(i,j) are assigned in
constant time

37

Affine Gap Weights

• Optimal alignments with affine gap weights can be
computed more efficiently

• The reason is that the cost of extending a gap of
length l by one space is now predictable:

• All that matters is whether a new gap is started (with
initiation weight Wg) or whether it has already begun

• This insight is formalized in the recurrences for cases E

and F (using variables V(i,j) , E(i,j) , F(i,j) and G(i,j) in
similar roles as before)

38

Recurrences for Affine Gap
Weights

• Base cases:

(start a gap and make it i or j spaces long)

• For i; j > 0, V(i,j) = max{E(i,j) ; F(i,j) ;G(i,j)}, as
above

• Case G of aligning S1[i] with S2[j] also remains the
same:

• What about cases E and F (either string ends with a
gap)?

39

(,0) (,0)

(0,) (0,)

g s

g s

V i E i W iW

V j F j W jW

   

   

1 2(,) (1, 1) ([], [])G i j V i j s S i S j   

Affine Gap Weight Recurrences

• Consider the recurrence for E(i,j), where, by definition,
S1[i] will be aligned with a character to the left of S2[j].

(a)If S1[i] is exactly one place to the left of S2[j], i.e., a
gap begins in S1 opposite character S2[j]

(b) If S1[i] is to the left of S2[j-1], i.e., the same gap in
S1 is opposite both characters S2[j-1] and S2[j]

Whichever the case, E(i,j) is by definition the maximum:

40

(,) (, 1) g sE i j V i j W W   

(,) (, 1) sE i j E i j W  

(,) max{ (, 1), (, 1) }g sE i j E i j V i j W W    

Affine Gap Weight Recurrences

• The explanations for F(i,j) go in a similar way and we
obtain the following recurrence formula

• As before, the optimal alignment value is found in cell
V(n,m)

41

(,) max{ (1,), (1,) }g sF i j F i j V i j W W    

Time Analysis

• Theorem: The similarity of strings S1[1..n] and
S2[1..m] with affine gap weights can be computed in
time O(nm)

Proof.

• The number of values V(i,j) , E(i,j) , F(i,j) , and G(i,j) is
O(nm), and each of them is computed from a constant
number of previously computed values

•NB: The above method computes also similarity with
constant gap weights, as a special case Ws = 0

42

