

Special course in Computer Science: Advanced Text Algorithms

Lecture 7: Approximate pattern matching, local alignments and alignments with gaps

Eugen Czeizler
Department of IT, Abo Akademi
http://combio.abo.fi/teaching/textalg/

(slides originally by I. Petre, E. Czeizler, V. Rogojin)

Approximate Pattern Matching

- Important generalization of exact matching: locate similar occurrences of a pattern instead of exact copies.
- Given a parameter k, a substring T' of T is an approximate occurrence of P iff the optimal alignment between P and T' is at least k
- Approximate occurrences of a pattern P within a text T can be computed as a slight variation of (global) alignment.
 - we will use a recurrence formula very similar with the one for computing a global alignment between two strings
 - dynamic programming approach.

Alignments

- A (global) alignment of S_1 and S_2 is obtained by inserting spaces in the strings, and then placing them one above the other s.t. each char or space is opposite a unique char or space from the other string. Moreover, a space in one string cannot be aligned with a space in the other string.
 - "global" ~ the entire strings participate in the alignment
 - local alignments ~ regions of high similarity
- Example: A global alignment of "vintner" and "writers":

```
V_INTNER_
WRI_T_ERS
```


Recurrence relation

- Let Σ' be the alphabet Σ extended with the space `_'
- Denote by s(x,y) the score of aligning chars x and y of Σ'
- Base conditions give the total score of aligning chars with spaces: V(0, j) = 0

$$V(i,0) = \sum_{k=1}^{i} s(P(k), _)$$

• The base condition for row 0 implies that T[1]; T[2];...; T[j] are aligned with spaces "for free", i.e., "it doesn't cost (or pay) to slide P along T"

Recurrence relation

• The general recurrence for i,j > 0 similarly takes the character-specific scores into account:

$$V(i, j) = \max \begin{cases} V(i-1, j) + s(P[i], _) \\ V(i, j-1) + s(_, T[j]) \\ V(i-1, j-1) + s(P[i], T[j]) \end{cases}$$

Recurrence relation

2.Align P[i] and T[j]

- Find the best alignment of P[1...i-1] and T[1...j-1]
- The score of aligning P[1...i] and T[1...j] would then be V(i-1,j-1) + s(P[i],T[j])

3.Align P[i] with a gap

- Find the best alignment of P[1...i-1] and T[1...j]
- The score would then be V(i-1,j)+s(P[i],_)

4.Align T[j] with a gap

- Find the best alignment of P[1...i] and T[1...j-1]
- The score would then be V(i,j-1)+s(_,T[j])
- Table V (i,j) can be filled, as before, in time ⊕(nm)

Example

•Take the following score scheme:

any match: score 1

any mismatch: score -1

any gap: score -1

And the two strings: P=rie and T=writer

	Т:		w	r	i	t	е	r	s
Р		0	1	2	3	4	5	6	7
	0	0	0	0	0	0	0	0	0
r	1	↑- 1	<u> </u>	₹ 1	← 0				-
i	2	↑- 2					-		
е	3	↑- 3					-		

Finding Approximate Occurrences

- An approximate occurrence of P[1..n] ends at position j within T if and only if V(n,j)≥k
- T[I..j] is an approximate occurrence of P in T if and only if $V(n,j) \ge k$ and there is a path of backpointers from cell (n,j) to cell (0,l)

Finding Approximate Occurrences

- There can be multiple approximate occurrences of P (of different length) ending at the same position j of T.
- The shortest approximate occurrences of a pattern P in the text T can be located as follows:
- 1. Find each column j on row n with $V(n,j) \ge k$
- 2. For each such j, trace pointers from the cell (n,j) to row 0, preferring pointers '\frac{1}{2}' over '\frac{1}{2}', and '\frac{1}{2}' over '\frac{1}{2}'
 - This way we explicitly output only the shortest approximate occurrences of P within the text T.

Significance of backpointers

- pointer '↑' from (i,j) to (i-1,j): space in T opposite to P[i]
- pointer `\'\' from (i,j) to (i-1, j-1): P[i] and T[j] are aligned
- 3. pointer ' \leftarrow ' from (i,j) to (i,j-1): space in P opposite to T[j], and

Local alignments

- Sometimes although 2 strings are not highly similar, they may contain regions that are highly similar.
 - Thus, we are interested in finding a pair of substrings, one from each of the 2 strings that exhibit high similarity.
- Local alignment (or local similarity) problem: Given strings S_1 and S_2 , find substrings α and β of S_1 and S_2 of maximal similarity among all pairs of substrings from S_1 and S_2 . Let v^* denote the value of the optimal solution.
- In Lecture 6 we discussed two measures for the relatedness of two strings:
 - the edit distance
 - the similarity

Local alignments

- Question: Why is the local alignment defined in terms of similarity instead of edit distance?
- If we would search for 2 substrings minimizing the edit distance, then, under most natural scoring schemes, the optimal pair would be exactly matching substrings.
 - The matching substrings could be 1 character long
 - They would not identify a region of high similarity.
- Maximizing similarity is thus more useful for finding longer areas of high similarity.
 - Matches contribute positively
 - Mismatches contribute negatively

Local alignments

- Example: Let S_1 =pqraxabcstvq and S_2 =xyaxbacsll and we take the following scoring scheme:
 - each match: score +2
 - each mismatch: score -2
 - each gap, i.e. aligning a space with a character: score -1.

Then, the substrings α =axabcs of S_1 and β =axbacs of S_2 have the following optimal alignment of value 8.

Over all choices of pairs of substrings, one from S_1 and one from S_2 , the 2 substrings α and β have maximum similarity.

Hence, for this example $v^*=8$ and is defined by $\alpha=axabcs$ and $\beta=axbacs$

Local vs. Global Alignment?

- Global alignment is often meaningful when comparing members of the same protein family
 - Protein cytochrome c has almost the same length in most organisms that produce it, so one expects to see a relationship between their sequences in different organisms.
 - Same is true for proteins in the globulin family
- When trying to infer evolutionary history by examining protein sequence similarities and differences, one usually compares proteins in the same family.

Local vs. Global Alignment?

- Local alignment considered more useful for comparing anonymous DNA sequences (where only some internal sections may be related)
- When comparing two protein sequences, local alignment is useful in detecting structural or functional subunits such as motifs or domains
 - the homeobox genes regulate high-level embryonic development in many organisms from fruit-flies to pigs to humans
 - The protein sequences are of course very different with one exception: the homeodomain (about 60 aminoacids) is extremely similar in insects and mammalians –this is very odd because this is part of a crucial regulatory protein that binds to DNA

Computing Local Alignment

- The local alignment problem btw strings $S_1[1..n]$ and $S_2[1..m]$ can be solved in O(nm) time
 - even though there are $\Theta(n^2m^2)$ possible pairs of substrings!
- In the definition of local alignments (given earlier) any scoring scheme was allowed for the global alignment of the two chosen substrings.
 - The following restriction will be useful for computing the local alignment.
- Assume first that the similarity of two empty strings is 0
 - This allows the local alignment algorithm to chose the substrings α and β to be empty.

Computing Local Alignment

• Consider the following restricted version of the problem:

Given indices $i \le n$ and $j \le m$, the <u>local suffix alignment</u> <u>problem</u> consists of finding a (possibly empty) suffix α of $S_1[1...i]$ and a (possibly empty) suffix β of $S_2[1...j]$ of maximal similarity.

We denote by v(i,j) the value of the optimal local suffix alignment for the index pair (i,j)

Example of Local Suffix Alignments

- Example: Take the following score scheme:
 - s(x,y) = 2 when $x=y \neq _$,
 - s(x,y) = -1 when $x \neq y$, for any $x,y \in \Sigma \cup \{_\}$

Consider strings S_1 =abcfdef and S_2 =fffcde.

Then:

```
• v(3,4)=2, since \alpha=\beta=c

• v(4,5)=1, since \alpha=cf and \beta=cd

• v(5,5)=3, since \alpha=f_d and \beta=fcd

1 2 3 4 5 6 7

S_1: a b c f d e f

• v(5,5)=3, since \alpha=f_d and \beta=fcd
```

 Since the definition allows either or both suffixes to be empty, v(i,j)≥0

Computing Local Alignment

- For each common substring u of sequences S_1 and S_2 , there are i and j such that u is at the same time a suffix of $S_1[1...i]$ and of $S_2[1...j]$
- For each i=0,1,...,n and j=0,1,...,m, v(i,j) is the best score between a suffix of $S_1[1...i]$ and a suffix of $S_2[1...j]$.
- Then the highest value in matrix v will give the most similar substrings of sequences S₁ and S₂
 - That is $v^*=\max\{v(i,j) \mid i \le n, j \le m\}$

- How does one align a suffix $S_1[1...i]$ with a suffix $S_2[1...j]$ in the best way?
- If i=0 or j=0 then the best is to align two empty strings with score 0.
- The base conditions: v(i,0)=0v(0,j)=0
- Otherwise, there are four options when computing the best alignment for a suffix of $S_1[1...i]$ and a suffix of $S_2[1...j]$, depending on how the endings are aligned

1. Take the two suffixes to be the empty strings

this gives score 0

2.Align $S_1[i]$ and $S_2[j]$

- Find the best alignment of S₁[1...i-1] and S₂[1...j-1]
- The score of aligning $S_1[1...i]$ and $S_2[1...j]$ would then be $v(i-1,j-1)+s(S_1[i],S_2[j])$

3.Align S₁[i] with a gap

- Find the best alignment of S₁[1...i-1] and S₂[1...j]
- The score would then be v(i-1,j)+s(S₁[i],_)

4.Align $S_2[j]$ with a gap

- Find the best alignment of S₁[1...i] and S₂[1...j-1]
- The score would then be v(i,j-1)+s(_,S₂[j])

 Choose that option which maximizes the alignment score:

$$v(i, j) = \max \begin{cases} 0 \\ v(i-1, j-1) + s(S_1[i], S_2[j]) \\ v(i-1, j) + s(S_1[i], _) \\ v(i, j-1) + s(_, S_2[j]) \end{cases}$$

 A table storing the v(i,j) values, including the backpointers, can be computed applying the recurrences, in a similar way as before

- The value v(i,j) stores the highest score between a suffix of $S_1[1...i]$ and a suffix of $S_2[1...j]$
 - There is always the alignment between the empty suffixes of $S_1[1...i]$ and $S_2[1...j]$ with cost 0
 - We introduce 0 in the maximum formula in the previous slide: alignment of score 0 is always guaranteed (align empty suffixes)

 we look for anything better
 - The matrix will only have nonnegative values

Local alignment

 Solving the local suffix alignment gives also the score of the best local alignment: the largest value in the matrix v.

- Question: How does one find that best local alignment?
- <u>Answer:</u> "walk" from the highest value in the matrix following the arrows until the first zero is reached

Local alignment -example

- Locally compare sequences ACTACTG and GCTGCTA
- Scoring scheme:

Match: score +1

Mismatch: score -1

• Gap: score -1

	Ø	Α	0 0 1 0 0 1 0	Т	Α	С	Т	G
Ø	0	0	0	0	0	0	0	0
G	0	0	0	0	0	0	0	1
С	0	0	1	0	0	1	0	0
Т	0	0	0	2,	0	0	2,	0
G	0	0	0	0	1	0	0	3
С	0	0	1	0	0	2	0	1
Т	0	0	0	2	0	0	3,	1
Α	0	1	0	0	3	1	1	2

ACTACTG GCTGCTA ACTACTG GCTGCTA ACTACTG GCTGCTA

Complexity of Local Alignment

- Maximum value v* is found say, in cell v(i*,j*), by going through *all cells of the* table. Substrings α and β with similarity v* are then found by tracing backpointers from cell (i*,j*) along a path (i*,j*);...;(i',j'); (i₀,j₀), where v(i₀,j₀)=0
- Then $\alpha = S_1[i'...i^*]$ and $\beta = S_2[j'...j^*]$
- Theorem: Local alignment between strings $S_1[1..n]$ and $S_2[1..m]$ can be computed in time O(nm) Proof.
 - Table v(i,j) is filled in constant time per cell
 - The cell (i*,j*) with an optimal score is found in time O(nm), and the traceback for (i',j') requires at most n + m steps

Remarks

- Instead of a single highest-scoring pair (α,β) of substrings, a number of similar substrings, say with similarity above a given threshold, can be found in a similar manner.
- Suitable scoring schemes are needed for meaningful local alignments:
 - scoring matches with 1 and mismatches/spaces with 0 locates longest common subsequences
 - penalizing mismatches/spaces with large negative values yields longest common substrings
 - scoring matrices with a positive average score tend to prefer long alignments, which approach global alignments

Alignments with Gaps

- A gap is a maximal consecutive run of spaces in a single string participating in an alignment
- In some cases alignments with gaps correspond better to the biological phenomena that we try to model, e.g., the likelihood of mutational events needed to transform one sequence into the other
 - a deletion or an insertion of an entire (DNA) substring (i.e., a gap) often occurs as a single mutational event
 - gaps are sometimes key features for inferring evolutionary history of a set of strings

Alignments with Gaps

Example of an alignment with gaps:

This alignment includes 5 matches, 1 mismatch, 4 gaps, and 7 spaces.

• By including a term in the objective function to reflect the gaps in the alignment, we can influence the distribution of spaces in the alignment.

How to Score the Gaps?

- Different possibilities to score the gaps of an alignment:
 - constant, affine, convex, and arbitrary
- A constant gap weight is the simplest:
- Set $s(_,x) = s(x,_) = 0$ for every char x, and score each gap by constant W_g (independent of gap length)
- Then the score of an alignment is:

$$\sum_{i=1}^{l} s(S'_{1}[i], S'_{2}[i]) - kW_{g}$$

where S'_1 and S'_2 are the strings padded with spaces for the alignment, and k is the total number of gaps

How to Score the Gaps?

- Changing the value W_g relative to the other weights can change how spaces are distributed in the optimal alignment.
- $^{\circ}$ For instance, large W_g encourages the alignment to have just a few gaps, and the aligned portions of the 2 strings will fall into a few substrings.

Affine Gap Weights

- Generalization of constant gap weight: Treat W_g as a gap initiation weight, and add a gap extension weight W_s for each space
 - a gap of length k adds cost $W_g+k\ W_s$ to the score (which is an "affine" function)
- Affine gap weights are probably the most commonly used ones in molecular biology
 - Default weights of FASTA are $W_g = 10$ and $W_s = 2$
- Optimal alignments under this model maximize

$$\sum_{i=1}^{l} s(S_1'[i], S_2'[i]) - kW_g$$

with scores $s(_,x) = s(x,_) = -W_s$ for each x, and k is the number of gaps in the alignment

Convex Gap Weights

- It seems that some biological phenomena are better modeled by a gap weight function where each additional space in a gap contributes less to the gap weight than the preceding space.
- An example of such a convex gap weight where additional spaces cost less than earlier ones is $W_g + \log I$ for gaps of length I
- Finally, we may have also arbitrary gap weights, where the weight of a gap is an arbitrary function w(I) of its length.

Time Bounds for Different Gap Weights

- Optimal alignments can be found in the following times:
- 1. $O(nm^2+n^2m)$ for arbitrary gap weights
- 2. O(nmlogm) for convex gap weights
- 3. O(nm) for affine and constant gap weights
- We will discuss the first and the third case in details (The algorithm for convex gap weights is more complicated)

Computing Arbitrary Gap-Weight Alignments

- Consider an optimal alignment between the prefixes $S_1[1..i]$ of S_1 and $S_2[1..i]$ of S_2 ;
- It can either
 - align S₁[i] to the left of S₂[j] (case E)
 - align S₂[j] to the left of S₁[i], or (case F)
 - align S₁[i] against S₂[j] (case G)
- Let E(i,j) be the maximum value of alignments of type E, and respectively F(i,j) and G(i,j) the maximum values of alignments of type F and G.
- The maximum value V(i,j) of any alignment between S₁[1..i] and S₂[1..j] is then max{E(i,j),F(i,j),G(i,j)}

Recurrences for Arbitrary Gap Weights

Let w(I) be the weight of a gap of length I

• Base cases:

$$V(i,0) = -w(i), \quad V(0,j) = -w(j)$$

$$E(i,0) = -w(i), \quad F(0,j) = -w(j)$$

G(0,0) = 0, and G is undefined if only one of i or j is 0

(as the cost of aligning a non-empty string with a gap)

 Recurrence formulas for the different cases for i; j > 0 are as follows:

$$\begin{split} E(i,j) &= \max\{V(i,k) - w(j-k) \mid 0 \le k \le j-1\} \\ F(i,j) &= \max\{V(l,j) - w(i-l) \mid 0 \le l \le i-1\} \\ G(i,j) &= V(i-1,j-1) + s(S_1[i],S_2[j]) \end{split}$$

Complexity

- The optimal alignment value V(n,m) can be computed by filling an (n + 1)(m + 1) table V(i,j) according to the recurrences
- <u>Theorem</u>: The similarity of $S_1[1..n]$ and $S_2[1..m]$ under arbitrary gap weights can be computed in time $O(nm^2+n^2m)$

Proof.

- Each E(i,j) is computed by examining j cells of table V, leading to $\Sigma_{1 \leq j \leq m} j = O(m^2)$ for computing a single row and $O(nm^2)$ for all E(i,j)
- Similarly, each F(i,j) is computed from i cells of table V, leading to O(mn²) time to compute all values F(i,j)
- In addition to that, each of V(i,j) and G(i,j) are assigned in constant time

Affine Gap Weights

- Optimal alignments with affine gap weights can be computed more efficiently
- The reason is that the cost of extending a gap of length I by one space is now predictable:

$$w(l+1) = W_g + W_s \times (l+1) = w(l) + W_s$$

- \bullet All that matters is whether a new gap is started (with initiation weight W_g) or whether it has already begun
- This insight is formalized in the recurrences for cases E and F (using variables V(i,j), E(i,j), F(i,j) and G(i,j) in similar roles as before)

Recurrences for Affine Gap Weights

• Base cases: $V(i,0) = E(i,0) = -W_g - iW_s$ $V(0,j) = F(0,j) = -W_g - jW_s$

(start a gap and make it i or j spaces long)

- For i; j > 0, V(i,j) = max{E(i,j); F(i,j); G(i,j)}, as above
- Case G of aligning $S_1[i]$ with $S_2[j]$ also remains the same:

$$G(i, j) = V(i-1, j-1) + s(S_1[i], S_2[j])$$

 What about cases E and F (either string ends with a gap)?

Affine Gap Weight Recurrences

- Consider the recurrence for E(i,j), where, by definition, $S_1[i]$ will be aligned with a character to the left of $S_2[j]$.
- (a)If $S_1[i]$ is exactly one place to the left of $S_2[j]$, i.e., a gap begins in S_1 opposite character $S_2[j]$

$$E(i, j) = V(i, j-1) - W_g - W_s$$

(b) If $S_1[i]$ is to the left of $S_2[j-1]$, i.e., the same gap in S_1 is opposite both characters $S_2[j-1]$ and $S_2[j]$

$$E(i,j) = E(i,j-1) - W_s$$

Whichever the case, E(i,j) is by definition the maximum:

$$E(i, j) = \max\{E(i, j-1), V(i, j-1) - W_g\} - W_s$$

Affine Gap Weight Recurrences

 The explanations for F(i,j) go in a similar way and we obtain the following recurrence formula

$$F(i, j) = \max\{F(i-1, j), V(i-1, j) - W_g\} - W_s$$

 As before, the optimal alignment value is found in cell V(n,m)

Time Analysis

• <u>Theorem</u>: The similarity of strings $S_1[1..n]$ and $S_2[1..m]$ with affine gap weights can be computed in time O(nm)

Proof.

- The number of values V(i,j), E(i,j), F(i,j), and G(i,j) is O(nm), and each of them is computed from a constant number of previously computed values
- •NB: The above method computes also similarity with constant gap weights, as a special case $W_s = 0$

